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A network embedding approach to identify active
modules in biological interaction networks
Claude Pasquier1 , Vincent Guerlais1, Denis Pallez1 , Raphaël Rapetti-Mauss2, Olivier Soriani2

The identification of condition-specific gene sets from tran-
scriptomic experiments is important to reveal regulatory and
signaling mechanisms associated with a given cellular response.
Statistical methods of differential expression analysis, designed
to assess individual gene variations, have trouble highlighting
modules of small varying genes whose interaction is essential to
characterize phenotypic changes. To identify these highly in-
formative gene modules, several methods have been proposed in
recent years, but they have many limitations that make them of
little use to biologists. Here, we propose an efficient method for
identifying these active modules that operates on a data em-
bedding combining gene expressions and interaction data. Ap-
plications carried out on real datasets show that our method can
identify new groups of genes of high interest corresponding to
functions not revealed by traditional approaches. Software is
available at https://github.com/claudepasquier/amine.
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Introduction

Current high-throughput technologies are now capable of reliably
quantifying, at the scale of an entire organism, the molecular
changes that arise in response to diseases or environmental dis-
turbances. To identify the most relevant genes for the process
under study, statistical methods are commonly used to assign
numerical values to the genes which reflect the degree of variation
observed. In most studies, the genes considered of most interest
are the ones whose relative differences in expression, or fold
changes, are the largest. Unfortunately, the raw fold change is
unreliable because it does not take into account for the inherent
uncertainty of gene expression measurements. To overcome this
uncertainty, existing methods calculate a P-value to reflect the
statistical significance of the variation.

Selecting the genes of interest on the basis of fold changes,
P-values or a combination of both makes it possible to compile a
list of genes whose expression varies most significantly. However,

this procedure fails to identify genes whose combined action is
essential in the process under study but whose individual scores
are too low.

Though, as pinpointed by Rapaport et al (2007), “a small but
coherent difference in the expression of all the genes in a pathway
should be more significant than a larger difference occurring in
unrelated genes.” Arising from this observation, many methods
have been proposed to analyze gene activity in the light of our
knowledge about their molecular interactions. These subnetworks
are named “context-dependent active subnetworks” (He et al, 2017),
“functional modules” (Beisser et al, 2010), “maximal scoring sub-
graphs” (Dittrich et al, 2008) or “altered subnetworks” (Reyna et al,
2018). The underlying idea is to identify a pertinent module of genes
by simultaneously taking into account two criteria: one based on
the measurement of the genes’ activities and the other one
reflecting the proximity between the genes in the module. One of
the challenges is to define an appropriate scoring strategy based on
these two criteria.

Nguyen et al (2019) classified main computational methods for
solving the active subnetwork identification problem in six cate-
gories: (i) greedy algorithms, (ii) random walk algorithms, (iii) dif-
fusion emulation models, (iv) evolutionary algorithms, (v) maximal
clique identification, and (vi) clustering based methods. The first
two methods are simple and rapid but are highly dependent to the
starting point of the algorithm that does not guarantee to reach
global optima. Conversely, methods (iii) and (iv) are able to find
global optima (in accordance with the scoring system used) or an
approximation of it at the prize of a computational burden. Method
(v) does not fully answer the initial issue as it is probably not true
that each gene involved in a biological process interacts with all the
others. Finally, method (vi) offers the advantage of being based on
existing clustering algorithms, but they require the calculation of a
distance (or similarity) metric between objects. On an attributed
graph, this distance must combine topological distances (such as
the number of edges separating two nodes) with the similarity of
the values associated with the nodes, making it challenging to
determine the appropriate metric. Moreover, most of the clustering
algorithms require to determine a priori the number of clusters to
build, which is challenging. The commonality between all these
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methods is that their effectiveness is very dependent on the
network topology. Unfortunately, it is known that molecular in-
teraction networks are noisy and incomplete (Kondratyeva et al,
2022). In recent years, network embedding (Cui et al, 2019) has
proven to be a powerful network analysis approach by generating a
very informative and compact vector representation for each vertex
v in the network. The approach was initially considered as part
of dimensionality reduction techniques (reducing, for example, a
|v| × |v| adjacency matrix into a |v| ×mmatrix, wherem� |v|). This
dimensionality reduction allows to reduce noise and map nodes in
a vector space in which distances between nodes accurately reflect
their proximity in the original network.

Recent advances on deep learning has led to a plethora of
methods based on deep neural networks for learning graph rep-
resentations, methods that are often inspired by the learning of
word embedding (Mikolov et al, 2013). Works on word embedding
can be seen as learning linear sequences (word sequences). It has
been shown that the resulting compact vector representations
are capable of capturing rich semantic information about natural
language. Processing graph structures is muchmore complicated. A
popular approach is to convert a complex graph structure with a
rich topology into a set of linear structures and then use a word
embedding method to calculate the vector representation of each
node. One of the most representative techniques for network em-
bedding is Node2vec (Grover & Leskovec, 2016).

To date, network embedding has been used in a variety of
computational biology studies, including predicting gene–disease
associations (Ata et al, 2018; Peng et al, 2019), identifying essential
proteins (Zeng et al, 2019; Wang et al, 2021a), predicting drug-target
interactions (An & Yu, 2021), protein–protein interactions (Nasiri
et al, 2021), drug–disease interactions (Zhou et al, 2020), and other
biomedical data science problems (Su et al, 2020). All these studies
are based on embeddings learned from unweighted graphs. Al-
though some research efforts suggest computing embeddings on
edge-weighted graphs, such as Node2vec+ (Liu et al, 2023), to our
knowledge, there is currently no network embedding method
specifically designed for node-weighted graphs. Furthermore,
network embedding has never been applied to active module
identification.

As mentioned above, the identification of active modules re-
quires the simultaneous consideration of two criteria. In existing
methods, measurements of gene activity and its network proximity
are either combined to form a single metric or optimized simul-
taneously usingmultiobjective algorithms (Correa et al, 2019). When
working on embedded networks, the proximity facet is embedded in
the vector space. It is then possible to focus on the detection of
subspaces containing genes that have a high activity. Consequently,
the identified modules may not necessarily be fully connected in
the original graph structure, in contrast to other methods that
operate on the graph. Our approach thus favors the proximity of the
nodes in the reduced vector space but there is no constraint for
connectedness.

Following this line, we propose AMINE (Active Module Identifi-
cation through Network Embedding), a new and efficient method
for activemodule detection based on Node2vec (Grover & Leskovec,
2016). Our method uses a greedy approach to build the clusters
based on the similarity of the nodes’ encoding vectors and a metric

that takes into account the activity of the contained nodes. We
evaluated the behavior of AMINE on artificially generated datasets
on which it is possible to accurately measure the performance of
the algorithms. On sparse interaction networks, in a task consisting
of finding 3 distinct gene modules, AMINE outperforms the MRF
method (Robinson et al, 2017), which itself achieved better results
than four other methods published between 2009 and 2015 using
the exact same dataset. On dense, more realistic networks, AMINE
can locate modules with a higher accuracy than other evaluated
methods. Furthermore, the work is done fairly quickly (30 min for a
network of 10,000 genes) and without any parameterization. We
next evaluated the performance of AMINE in predicting known
pathways/biological processes on a publicly available tran-
scriptomic dataset comparing pancreatic ductal adenocarcinoma
(PDAC) with low and high metastatic potency. Finally, we explored
in vitro unexpected functions predicted by AMINE for BLIMP1/
PRDM1, one of the most overexpressed genes in pro-metastatic
cells. Altogether, these analyses show that AMINE allows to com-
plement the results obtained with classical approaches by iden-
tifying relevant functional groups of genes, and unveil unexpected
functions.

Results

Evaluation of AMINE on artificial data generated
by Robinson et al (2017)

Many studies dealing with the identification of active modules have
tested their methods on datasets generated by themselves and
which are, at times, difficult to reproduce. Robinson et al (2017) are
among the few to give access to all materials used to test the MRF
method they proposed. Thesematerials contain the graph itself, the
P-values associated with the nodes, and the modules to be identified.
It gives us the opportunity to apply our method on exactly the same
data.

The simulated experiment used to evaluate the MRF method
(Robinson et al, 2017) consists of a set of 1,000 scale-free graphs,
each containing 1,000 vertices associated with values simulated
from a standard uniform distribution. In this dataset, each graph
contains three distinct modules to be identified (called “hit
modules”), with eachmodule containing 10 vertices. To simulate the
fact that the vertices belonging to these modules represent dif-
ferentially expressed genes, and are therefore associated with low
P-values, these vertices are assigned simulated values from a
truncated Gaussian distribution with mean 0 and SD equals to 0.05.
Robinson et al (2017) compared their MRF method with NePhe
(Wang et al, 2009), Knode (Cornish & Markowetz, 2014), and BioNet
(Beisser et al, 2010) and reported that MRF gives the best perfor-
mance in terms of recall. Because it is known that there are exactly
30 true hits in the dataset, the authors rate the differentmethods by
considering only the proportion of true hits in each hit list of size 30.

We ran AMINE on these data to detect the three most significant
modules. The median recall of amine is 0.79, whereas MRF has less
than 0.7. For AMINE, 50% of the recall score range between 0.73 and
0.84, whereas the same range for MRF is 0.6 and 0.75, respectively
(Fig S1A). The precision (number of true positives divided by the
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number of nodes identified) and the F1 score (harmonic mean of
precision and recall) were also plotted on the same figure. The
median value of the F1 score is 0.76, whereas the minimum and
maximum values are 0.31 and 0.94, respectively. The total number of
genes in the three identified modules range from 18 to 46 with a
median of 28 (Fig S1B). This means that AMINE is able to identify
modules close to the ground truth (although slightly smaller)
without the need to specify their size a priori.

Validation of the method on artificial dense networks

It has already been shown that simulating a biological network is a
very difficult task (Pavlopoulos et al, 2011). For many years, Erdos
and Reyni’s model, which considers a network as a set of nodes
connected in pairs with equal probability, was the dominant model
(Erd}os & Rényi, 1960). However, numerous studies of real networks
have shown that these networks can self-organize into a scale-free
state. In a scale-free network, the degree distribution of nodes
follows a power-law, meaning that there are a few highly connected
nodes (hubs) and many nodes with a low number of connections.
Barabási and Albert (1999) have proposed a mathematical model,
known as the preferential attachment model, for generating scale-
free random networks. The principle of the method is to start with a
small number of vertices (m0) and to add, at each time step, a new
vertex withm edges connecting the new vertex tomdifferent vertices
already present. The probability Π that a new vertex is connected to
vertex i depends on the connectivity ki of that vertex, such that
ΠðkiÞ = ki= �

j
kj.

However, we have found that the generation of artificial net-
works using this model, as carried out in various studies (for ex-
ample, the articles of Cornish and Markowetz [2014] and Robinson
et al [2017]) is too far from a real interaction graph for the results to
be extrapolated (see Fig S2 for an example of such sparse graph).

In 2000, Barabási and Albert proposed an extended version of
their model (Albert & Barabási, 2000) which enables more realistic
networks to be generated. The same principle applies, but at each
time step, one of the following three operations is performed: (i)
with probability p, m new links are added; (ii) with probability p, m
links are rewired; (iii) with probability 1 - p – q, a new node and m
links are added. Our experiments suggest that using 3 initial nodes
with parameters p and q set to 0.09 and 0.70, respectively, allows to
generate random networks with topologies relatively close to real
interaction networks. Details on the network generation, the choice
of parameters p and q, and a comparison with real biological
networks are given in the Materials and Methods section. Fig S3
shows an example of a generated dense network.

Using the extended Barabási–Albert model (Albert & Barabási,
2000) parametrized as specified in the Materials and Methods
section, we generated 1,000 artificial networks with topologies
relatively close to real interaction networks and one hit module to
discover with size of 10 or 20 nodes. The performance of AMINE was
compared with the methods GiGA (Breitling et al, 2004), BioNet
(Beisser et al, 2010), COSINE (Ma et al, 2011), DIAMOnD (Ghiassian
et al, 2015), DOMINO (Levi et al, 2021), and a baseline consisting
in simply picking the genes with the lowest P-values. The results
are shown in Fig 1 for networks with a module of size 10 and in

Fig S4 for networks with a module of size 20, both comprising 1,000
vertices.

Our results indicate that identifying a module on a denser
network is a much more complicated process, as the median F1
score drops significantly from 0.76 on a sparse graph to values just
above 0.5 (Figs 1A and S4A). Overall, however, the scores for the
other methods are lower. COSINE and DIAMOnD scores are lower
than the baseline strategy that relies solely on P-values. The F1
score obtained by BioNet is slightly below the baseline for the
identification of an active module of size 10 and slightly above for
the task of identifying an active module of size 20. In the case of
COSINE and BioNet, these poor results come from predicting large
modules with a median size exceeding 150 nodes for COSINE and 75
nodes for BioNet (Figs 1B and S4B). GiGA is the second-best per-
forming method. For modules of size 20, the F1 scores of GiGA and
AMINE are very close (Fig S4A). However, it should be noted that GiGA
uses a parameter that determines the maximum size of the module
to be identified. In our experiment, we set themaximum size equal to
the expected size of the module to be identified, which, of course,
facilitates the procedure. As shown in Figs 1B and S4B, for GiGA, the
size of the identified modules is always smaller than the maximum.
The other method that needs the expected module size is DIAMOnD
which produces a module with exactly the specified size. DOMINO, a
method that does not need the expectedmodule size as a parameter
identifies on average, for both configurations, small modules of less
than 10 genes. For AMINE, without any indication on the size of the
modules searched, we can see that the method predicts modules
with a median size close to the ground truth size.

The results obtained by the DOMINO algorithm are atypical, be-
cause it identifies modules that closely match the ground truth on
somenetworks, whereas onothers, it completelymisses themodules
that need to be identified, leading to poor results. We believe that the
fundamental assumption onwhich the algorithmwas designed is the
cause of this issue. In their article, Levi et al (2021) noted thatmodules
detected by active module identification methods often include GO
terms that are also found in modules identified on randomly per-
muted data, indicating that they are not specific to the biological
context of the omics dataset being analyzed. The authors address
this bias by partitioning the network into disjoint, highly connected
subnetworks, which they term as “slices.” This process is carried out
statically because it only deals with the network of interactions and
does not take into account the values associated with the nodes. The
search for active modules is then performed within each of these
slices. Thismethod therefore relies on the strong assumption that an
active module must be included in one of the slices identified on the
network, which may not be true on artificially generated networks
where an active module may consist of a set of connected genes that
are not necessarily clustered together. This hypothesis could well be
verified on real interaction networks, but this remains to be proven.
Meanwhile, as far as artificial datasets are concerned, this specificity
of the DOMINO algorithm explains, in our opinion, to a large extent,
the poor performance of the method.

Scalability of the method

To test to what extent our method is able to scale to larger net-
works, we applied it to an artificial network of 10,000 vertices that
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was generated using the same parameters previously defined. The
processing time increases from 1 min for a dense network of 1,000
nodes to 30 min for a dense network of 10,000 nodes.

The distribution of F1 scores and the sizes of identified
modules for AMINE and five other methods are displayed in Fig
S5, and in Fig S6 for modules of sizes 10 and 20, respectively (The
COSINE method has not been tested on 10,000-node networks
because of its slow speed and poor performance). For modules of
size 10, the median F1 is in agreement with that obtained on
networks of size 1,000 (Figs S5A and S6A). The overall perfor-
mance is however less good because it is penalized by the fact
that, in many cases, the module is completely missed (which
explains why the second quartile starts at zero in Fig S5A). This
can be explained by the fact that, as the number of nodes in the
network increases, the number of non-hit nodes that are asso-
ciated with a random value higher than the values associated
with hit genes increases. So, the probability that randommodules
score higher than the hit module increases too. This effect is less
important for modules of size 20, for which the method works and
for networks of 1,000 nodes (Fig S6A). Regarding sizes, they are
still close to the ground truth, although there is a greater spread
of values for modules of size 20 (Figs S5B and S6B). Except for
GiGA, which performs reasonably well, all other methods display
poor results.

Validation using a real gene expression dataset

To test the ability of AMINE and other methods to identify relevant
biological functions, we downloaded from Gene Expression
Omnibus a dataset relative to a study aimed at characterizing
processes and genes associated to metastatic spreading in PDAC.
With a 5-yr survival that has not significantly evolved for 30 yr
despite progresses in anticancer therapies (<6%), PDAC is a cancer
with one of the bleakest prognoses of the most fatal cancers. In
the study of Chiou et al (2017), the authors compared two

populations of primary PDAC cells according to the expression of
HMGA2, a gene associated to a high metastatic potency and poor
outcome in several cancers, including PDAC. RNA-Seq quan-
tification was carried out from six pairs of HMGA2+/HMGA2− cell
populations, each pair originating from PDAC primary tumors
spontaneously generated in a genetically engineered PDAC
mouse model (PKC mice). Although the study identified hun-
dreds of genes with consistent and significant differences
between HMGA2- and HMGA2+ cells, the authors did not ob-
serve any significant signatures or enrichments associated with
PDAC metastasis (gene set enrichment analysis and GO enrich-
ments), excepted an overwhelming enrichment for hypoxia-induced
genes in metastatic cells. Subsequent extensive experiments
conducted in silico, in vitro, and in vivo demonstrated that BLIMP1,
one of the top up-regulated genes in metastatic HMGA2+ cells,
contributed to a subset of hypoxia-associated gene expres-
sion programs, leading to epithelial–mesenchymal transition
(EMT), migration, and glucose metabolic reprogramming which are
some of the hallmarks of PDAC metastatic status (Chiou et al, 2017;
Wang et al, 2021b; Whittle et al, 2015). To assess the usefulness of the
active module identification methods and enable cross-method
comparisons, we used the considered algorithms to analyze the
differential gene expression of the HMGA2+/HMGA2- RNA-Seq ex-
periment performed using DESeq2 (Love et al, 2014). The goal was to
determine whether it was possible to identify gene modules in-
volved in the functions associated to the metastatic signature of
cancer cells, for example, EMT, ECM reorganization, glycolytic
reprogramming, angiogenesis, involvement of RAS and PI3K/
AKT signalling pathways. All the methods tested on the artificial
datasets have been executed except COSINE which is a very slow
method and always generates large modules of little interest.
Parameters used to run the methods are specified in the Materials
and Methods section. GiGA, BioNet, DIAMOnD, DOMINO, and AMINE
have identified 5, 104, 1, 8, and 193 modules, respectively. Table S1
shows the top 5 modules identified by the different methods. We

Figure 1. Results obtained for the identification of
modules of size 10.
Comparison of AMINE with GiGA, BioNet, COSINE,
DiAMOND, and DOMINO on a task consisting of
identifying amodule of size 10 on a dense artificial
network with 1,000 vertices (on these networks,
using the generation method described in the article,
we count an average of 4,300 edges). The boxplots
summarize the results obtained on 1,000 different
networks. “Expr. value,” that is used for baseline,
consists of selecting the 10 genes with the lowest
P-values. (A) Boxplots representing the distribution
of F1 scores. (B) Boxplots representing the
distribution of identified module sizes. The dotted
line represents the expected size of the modules.
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next used gene set enrichment analysis (Subramanian et al, 2005)
to compute enrichments with hallmark and curated terms using
annotated genesets from the Molecular Signatures Database
(Liberzon et al, 2015). As performed by Chiou et al (2017) on the
differential HMGA2+/HMGA2- cell dataset, we searched for terms
related to the general metastatic signature of PDAC cancer cells
with each module. As expected, we recovered the hypoxic signature
already found by Chiou et al (2017). However, contrasting with their
analysis, we found evidence for enrichment for previously de-
scribed gene signatures of metastatic PDAC cells, in many of the five
best modules identified by the different methods. The list of all
enrichments is presented in Table S2. In Table 1, we specified the
false discovery rate (FDR) associated with hallmarks related to
metastatic PDAC cells, that is, EMT, ECM organization, glycolysis
(carbohydrate metabolism), angiogenesis, RAS and PI3K/AKT
pathways, and finally hypoxia (Whittle et al, 2015; Chiou et al, 2017;
Wang et al, 2021b). We can see that all methods generate modules
that can be associated to one or several metastatic hallmarks
(Table 1). Overall, the DOMINO and AMINE methods are the most
successful in generating modules associated to metastatic sig-
nature. Interestingly, the five modules retrieved by AMINE achieved
17 correspondences matching with metastatic features, whereas
only 11 correspondences were identified from the modules gen-
erated by DOMINO.

To have a more complete vision of the functions associated with
each module, we carried out, for each of them, an enrichment
analysis using the facilities offered by the STRING website (https://
string-db.org - Szklarczyk et al, 2019). The lists of all enrichments
associated with each module with an FDR < 0.05 are presented in
Table S3. The first five modules identified by AMINE and their most
significant enrichment are presented in Fig 2. The same figures,
made to illustrate the results of the methods DOMINO, BioNet, and
GiGA are in Figs S7–S9. Results of DIAMOnD are not shown as the
method identifies only onemodule. To ensure that the choice of the
annotation associated to each module is not biased, we have
systematically shown on the figures the enrichment associated with
the lowest FDR among the curated datasets KEGG (Kanehisa et al,
2023), Reactome (Gillespie et al, 2022), WikiPathways (Martens
et al, 2021), and Gene Ontology Biological Process (Gene Ontology
Consortium, 2019).

It was found that the different methods produced modules with
varying degrees of overlap. BioNet was the method that generated
the most overlapping modules, whereas GiGA produced perfectly
separated modules. Most of the modules generated by all methods
clearly corresponded to specific functions or pathways with very
low FDR. However, it was noted that for the DOMINO, GiGA, and
BioNet methods, somemodules showed less clear enrichment, with
FDR values above 0.001. In contrast, the AMINE method generated

Table 1. Summary of the enrichment with GSEA of each identified module.

EMT ECM Glycolysis Angiogenesis RAS PI3K Hypoxia

GiGA

Module 1 7.78 × 10−31 2.23 × 10−6 8.76 × 10−6 2.16 × 10−11 1.52 × 10−12 2.19 × 10−2

Module 2 1.99 × 10−8 3.4 × 10−9 5.67 × 10−8

Module 3

Module 4 1.7 × 10−2 1.27 × 10−3

Module 5 2.9 × 10−2

BioNet

Module 1

Module 2

Module 3 1.8 × 10−2

Module 4 6.33 × 10−14 1.5 × 10−9 5.4 × 10−11

Module 5

DIAMOnD Module 1 8.63 × 10−25 9.38 × 10−43 1.07 × 10−3 6.97 × 10−26

DOMINO

Module 1 3.10 × 10−30 6.43 × 10−27 6.18 × 10−6 6.96 × 10−8 2.59 × 10−16

Module 2 5.28 × 10−10 6.44 × 10−9

Module 3 9.88 × 10−6 7 × 10−3 5 × 10−3 5.29 × 10−4

Module 4

Module 5

AMINE

Module 1 1.65 × 10−16 4.9 × 10−11 2.75 × 10−6 1.43 × 10−8 1.41 × 10−5 2.2 × 10−4

Module 2 3.32 × 10−5 6.20 × 10−10

Module 3 4.57 × 10−7 3.9 × 10−3 1.29 × 10−5

Module 4 4.57 × 10−5 3.39 × 10−9

Module 5 1.53 × 10−2 3.42 × 10−14 1.06 × 10−3

First two columns list the name of the methods and the identified modules. The following columns contain the false discovery rate associated with hallmarks
related to metastatic PDAC cells, that is, epithelial–mesenchymal transition, ECM organization, glycolysis (carbohydrate metabolism) angiogenesis, RAS and
PI3K/AKT pathways, and finally, hypoxia.
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modules that were all enriched with terms associated with an FDR
below 1 × 10−7. Importantly, the AMINE method was the only one to
identify a module specifically associated with the hypoxia
pathway. Module 2 was indeed associated with the KEGG “HIF-1
signaling pathway” with an FDR below 1 × 10−8. Overall, the
comparison of the four methods highlighted the strengths and
weaknesses of each approach, with AMINE standing out as
particularly effective in identifying enriched modules with very
low FDR values and identifying a specific module associated with
the hypoxia pathway.

Another strong point of the AMINE method is that it makes it
possible to identify a list of modules that is usually very long. As
we have shown above, it is then possible to focus on the
modules considered as the most significant or, conversely, to
specifically target modules associated with some genes of in-
terest. This is what we propose in the following, by analyzing in
more detail the results provided by AMINE and, as Chiou et al did
in their article, by directing our analysis towards the BLIMP1
gene.

ECM organization and ECM cell interaction

A hallmark of PDAC is a pronounced collagen-rich fibrotic ECM
produced by fibroblasts and cancer cells, known as the desmo-
plastic reaction. The neoplastic epithelium exists within a dense
stroma, which is recognized as a critical mediator of disease
progression through direct effects of ECM on cancer cells (Hosein

et al, 2020). Notably, three out of the five modules produced
by AMINE were found to be linked to the stromal reaction (des-
moplasia): modules 1 and 4 were enriched for “organization of the
ECM” and module 3 for “cellular interactions with the ECM.”Module 1
was more specifically linked to collagen fibril organization, one
of the major constituent of PDAC ECM. Indeed, collagen contributes
to tumor cell aggressiveness, metastatic process, and chemo-
resistance (Shields et al, 2011; Hessmann et al, 2020). Interestingly,
module 3 brings together genes involved in the regulation of cancer
cell interaction with ECM through focal adhesion kinases and PI3K/
AKT pathways (Fig 2 and Table S3). Based on the available literature,
these processes have been strongly involved in the aggressiveness
of PDAC cell and the development of metastasis (Jiang et al, 2016;
2020).

Response to hypoxia

Extensive desmoplasia and hypovascularization within PDAC re-
sults in significant intra-tumoral hypoxia (low oxygen) that con-
tributes to its aggressiveness, therapeutic resistance, and high
mortality (Koong et al, 2000; Hollinshead et al, 2020). Functional
enrichment of modules 2 and 5 raised hypoxia-triggered functions,
that is, VEGF- and HIF-1-dependent pathways. These pathways drive
angiogenesis, metabolism adaptation of cancer cell to hypoxia
(Warburgh effect), cell cycle inhibition, enhanced migration, and
metastatic progression (Fig 2 and Table S3). These results are in
good agreement with the literature on PDAC; for example, these

Figure 2. AMINE reveals modules associated to metastatic process in HMGA2-positive PDAC cells.
The network was generated by STRING using the five first modules generated by AMINE from the list of deregulated genes in HMGA2+ PDAC cells available in the article of
Chiou et al (2017). The annotation of each module is determined by choosing the gene enrichment that is associated with the lowest FDR.
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pathways are overrepresented in genome-wide transcriptome
profiling from ex vivo human PDAC (Ghaderi et al, 2020; Shah et al,
2020). More interestingly, hypoxia-, VEGF-, and HIF-1-associated
pathways were repressed in PDAC cells in which BLIMP1, one of
the most overexpressed gene in HMGA2+ cell subpopulation, was
silenced (Chiou et al, 2017).

Altogether, these results validate our methods because non-
oriented analysis of genes deregulated in pro-metastatic PDAC cells
by AMINE retrieves genemodules involved in highly relevant functions
in the context of the disease.

In vitro functional validation of BLIMP1-associated module in
human PDAC cells

BLIMP1 is considered a “master regulator” of hematopoietic stem
cells, and plays a critical role in the development of plasma
B cells, T cells, DCs, macrophages, and osteoclasts. Interestingly,
Chiou et al revealed that BLIMP1 is one of the most overex-
pressed genes in pro-metastatic HMGA2+ PDAC cells (Chiou et al,
2017). The authors analyzed the consequences of BLIMP1 si-
lencing in mice PDAC cells to unveil its function in disease
progression. Based on in silico, in vitro, and in vivo experiments,
they concluded that BLIMP1 acts as a driver of the metastatic
ability of PDAC cells. In particular, they found that BLIMP1 is a
hypoxia/Hif-regulated gene in human and murine PDAC which is
in a good agreement with functions recovered in modules 2 and 5
raised by AMINE processing (Fig 2 and Table S3). Surprisingly,
BLIMP1 was not included in these modules, but was indeed
detected in a module of 4 genes (module number 169 with a
P-value of 0.044; Table S4 and Fig 3).

Functional enrichment of this module unveiled functions as-
sociated to immune response, including regulation inflammation,
interleukin production, and Th17 cell differentiation (Fig 3A and
Table S5). Interestingly, it is known that neoantigen expression in
PDAC results in exacerbation of an inflammatory microenvironment
that drives disease progression and metastasis (Hegde et al, 2020).
It was therefore tempting to validate this result using a series of
functional experiments. In this perspective, we first explored a RNA-
Seq experiment performed by Chiou et al revealing deregulated
genes in BLIMP1-silenced PDAC cells compared with control (Chiou
et al, 2017). AMINE profiling of genes negatively regulated by BLIMP1
silencing revealed 345 modules with associated P-values < 0.05
(Table S6). Among the 10 best modules, we found that modules 2
(P-value < 1.01 × 10−11) and 9 (P-value < 2.83 × 10−8) were associated
to cytokine production and inflammatory process (Fig 3 and Table
S5) after functional enrichment. Next, to confirm the putative in-
volvement of BLIMP1 in epithelial cancer cell inflammatory process
in vitro, we silenced BLIMP1 in MIA PaCa-2 cells, a human PDAC cell
line, using siRNA silencing, (Fig 4A), and explored how it modified
the profile of cytokine secretion using a cytokine profiling array and
Western blot experiments. Indeed, we found that BLIMP1 repression
triggered the production of IL-18Bpa and angiogenin, two anti-
inflammatory factors (Lee et al, 2014) and reduced the secretion IL-
6, a major pro-inflammatory interleukin (Tanaka et al, 2014) (Fig 4B
and C).

Altogether, these results indicate that the participation of blimp-1
in inflammatory process predicted by AMINE could be confirmed
in vitro. They further validate AMINE as a valuable method to detect
relevant functional modules from large experimental datasets. Our
study therefore unveils a new function of BLIMP1, in the regulation

Figure 3. BLIMP1 is associated to
immune response and inflammation in
PDAC cells.
Module 169 is the BLIMP1-associated
module generated by the profiling of
genes deregulated in PDAC metastatic
HMGA2-positive cell population. Modules 2
and 9 generated by the profiling with
AMINE of the genes down-regulated in
BLIMP1-silenced PDAC cells. The
annotation of each module is
determined by choosing the gene
enrichment that is associated with the
lowest FDR.
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of PDAC-related inflammatory process triggered by tumoral epi-
thelial cells.

Discussion

This article proposes a new method for identifying gene modules
that are activated as a result of a state shift caused by a biological
experiment. Our method, called AMINE, uses as inputs, on the one
hand, the ultimate result of any RNA-Seq analysis pipeline which is
the differential expression of genes, and on the other hand, a
network modeling the interactions between genes.

Although many methods have been developed over the past
two decades, AMINE stands out for its ability to accurately identify
modules on datasets designed to mimic the structure of biological
networks, outperforming many other competing methods. Extrap-
olating these results to a measure of accuracy on real datasets is
very difficult. There is nomethod to ensure that good predictions on
artificial data translate into good predictions on real datasets.
However, we have made a special effort to ensure that our sim-
ulations are close to real datasets. The networks we generate, with
the parameters presented in this article, are closer to a real in-
teraction network than the networks used by some competing
methods. In addition to the results reported in this article, several

studies utilizing AMINE to analyze various types of data have al-
ready been published (Feliz Morel et al, 2022; Pasquier & Robichon,
2022a; 2022b), which also emphasizes the relevance of the results
obtained by the method.

Several studies utilizing AMINE to analyze various types of data
have already been published (Feliz Morel et al, 2022; Pasquier &
Robichon 2022a; 2022b).

It is known that the interaction networks stored in public da-
tabases are both incomplete and contain erroneous interactions. In
their study, Von Mering et al (2002) estimate that, for Saccharo-
myces cerevisiae, the protein–protein interaction data (PPI) re-
ported in public databases account for only one-third of existing
interactions. This observation suggests that methods relying heavily
on network topology may not be very suitable. In particular,
the effectiveness of methods based on clique identification may
be questionable if we consider that a significant proportion of
protein–protein interactions remain unknown.

This observation leads us to believe that methods based very
precisely on the topology of networks are not to their advantage. We
think first of all of the methods based on the identification of
cliques. Their performance is more than questionable if we con-
sider that a large part of the interactions between proteins are
unknown. If we consider that the missing interactions are randomly
distributed on the graph, we can estimate that all the paths on the
graph are impacted in the same way and thus that the methods
based on random walks could be the least affected. Intuitively, we
can indeed argue that, in a graph on which a certain proportion of
the edges have been randomly deleted, if, from a source node A,
random walks allow on average to reach node B before node C,
then, on the complete graph, node B will probably always be closer
to node A than node C. The other problem with methods based on
graph traversals is that PPI networks are “small-world” networks,
meaning that the neighbors of a given node are likely to be
neighbors of each other, and most nodes can be reached from
every other node by a small number of hops. Thus, any method that
relies on graph traversals will find that a large portion of the
network is close to any typical node (Cao et al, 2013). We indeed
argue that network-embedding methods can provide the backbone
of reliable methods by estimating distances between nodes that
take into account the entire topology of the graph and, moreover,
are little affected by the proportion of missing edges. Our original
method works on an embedding of an interaction network by
adopting a greedy algorithm and an active subnetwork relevance
measure defined in other articles (Ideker et al, 2002). The great
advantage of our method is that it does not require any param-
eterization; it is not even necessary to indicate the number of
modules to be identified or the size of the modules.

We have checked that our method performs well on artificial
datasets and compares favorably with existing methods that are
the current state of the art. We then processed a real dataset from a
study focused on PDAC, on which AMINE retrieved modules asso-
ciated with functions recapitulating PDAC metastatic process such
as the response to hypoxia and extra-cellular matrix-dependent
signalling. Moreover, our studies show that AMINE can identify
modules corresponding to functions not revealed by traditional
approaches consisting in analyzing only the most differentially
expressed genes. Indeed, we found that BLIMP1, one of the most

Figure 4. BLIMP1-silencing modifies the cytokine secretion profile in PDAC
cells.
(A) Immunoblots of Blimp 1 in MIA PaCa-2 cells transfected with a non-targeting
siRNA (Si-Ctrl) or with two different siRNA targeting Blimp-1 (Si-Blimp 1–1 and
Si-Blimp 1–2). Data are representative of three independent experiments.
(B) Soluble cytokine protein expression was assessed using cytokine arrays in
si-Ctrl or si-Blimp 1 transfected MIA PaCa-2 (N = 2; n = 4). Representative arrays are
shown. On the left panel, values from densitometry quantification are shown as
a fold change from the control. (C) Immunoblots of Blimp 1 and IL-6 in MIA PaCa-2
cells transfected with a non-targeting siRNA (Si-Ctrl), or with two different siRNA
targeting Blimp-1 (Si-Blimp 1–1 and Si-Blimp 1–2). On the left panel, values from
immunoblots densitometry quantification are shown as scatter plots, n = 5,
* = P < 0.05.
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up-regulated genes in highly metastatic cells, was included by AMINE
in a module ontologically associated to pro-inflammatory process, a
result confirmed in vitro. Indeed, the silencing of BLIMP1 in human

PDAC cells altered cytokine production. However, we stress that our
method is not an alternative to methods based on the identification
of the most differentially expressed genes, but rather a complement
to these approaches.

In this article, we used the STRING protein–protein interaction
network for mouse. However, we would like to emphasize that
AMINE is not limited to these data. Themethod is flexible and allows
users to choose between the STRING, BioGRID, and IntAct PPI
networks for four different organisms, namely Caenorhabditis
elegans, Drosophila melanogaster, Homo sapiens, and Mus
musculus and it is possible to easily add others. In addition, users
have the possibility to upload their own network in a simple format,
which would allow using AMINE with other types of biological
networks, such as metabolic or gene-regulatory networks. Using
these additional networks in AMINE, potentially by combining them,
could provide further insights into biological systems.

Materials and Methods

The AMINE method predicts active modules from data consisting of
background knowledge about gene interactions and measure-
ments representing, in the specific context of a given experiment,
indicators of the involvement of genes in the studied process. This
concept of gene involvement is materialized by a P-value which
quantifies, for each gene, the statistical significance of its variation
(Fig 5A).

Data about gene interactions and gene variations are merged to
generate an attributed gene network in which genes are annotated
with a numeric attribute representing the extent of their variation
(Fig 5B). Mathematically, the dataset is represented as an attributed
graph G = (V,E,λ) consisting of a set of vertices (also called node, that
symbolizes the genes), a set of edges E4{(u,v)2V2⋁u≠v} and a value
function λ(v):V→R which associates a value P2R to each vertex v2V.
An induced subgraph of G is a subset of the vertices of G together
with those edges of with both endpoints in S. Many active module
detection algorithms focus on identifying induced subgraphs
whose values associated with their nodes stand out from the values
associated with the other nodes of the graph. We hypothesize that
focusing heavily on the detection of connected sets of genes may
not be optimal, given the fact that the interactions between genes
described in the databases are still largely incomplete. For this, we
adopt a definition of a module that is closer to the one used in
cluster analysis: objects that are grouped together (in amodule) are
more similar to each other than to those in other groups. The notion
of similarity encompasses a component taking into account the
distance on the graph between the vertices belonging to a module
and a significant nearness between the values associated to these
vertices.

Scoring of a subgraph

Let Pi = λ(vi) be the associated P-value of vertex vi. We aggregate the
P-values associated to the nodes of a subgraph with Stouffer’s Z
method, the same strategy used by Ideker et al (2002). If we let z(vi) =
Φ−1(1−λ(vi)), whereΦ is the standard normal cumulative distribution

Figure 5. Workflow of the AMINE method.
(A) Input data are composed of a table storing the significance of the
expression variation of genes between two conditions and a network
representing known gene interactions. (B) Data about gene interactions and gene
variations are merged to generate an attributed gene network. (C) Nodes
belonging to the attributed gene network are mapped to a low-dimensional
space through the use of a biased Node2Vec method. (D) Sets of genes that are
both cohesive and differentially expressed are identified in the embedded
space by maximizing both the scores of the nodes and the cosine distance
between the vectors representing the nodes. (E) Redundancy in the content of
modules is ruled out by combining sets of nodes obtained in the previous step
while ensuring that the result remains spatially cohesive.
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function, then, the aggregate z-score za(G9) for an induced subgraph
G94G composed of k vertices, is computed with

za G0ð Þ = 1
ffiffiffi

k
p �

vi2G0
z við Þ:

To get a subnetwork which has higher aggregation z-score
compared with a random set of vertices, we define, still following
the samemethodology as Ideker et al (2002), a corrected score s(G9)
of a subgraph with

sðG9Þ = zaðG9Þ−μk
σk

;

where themean μk and SD σk are computed based on a Monte Carlo
approach, taking 10,000 rounds of randomly sampling a connected
subgraph of k vertices from V. From s(G9), we can easily compute the
probability of observing in G, a subnetwork of the same size as G9
with a corrected score at least as extreme as the one observed. This
is given by the one-sided P-value: P-value(G9) = 1−Φ(s(G9)).

Network embedding

A network-embedding method is a function ψ:V→Rm that associ-
ates to each vertex v of the graph a vector d of size m. Node2vec
(Grover & Leskovec, 2016) uses a biased random walk procedure
which efficiently generates diverse neighborhoods of a given node.
Node contexts are then processed with the word2vec method
(Mikolov et al, 2013). Node2Vec uses two parameters to control the
walks. Intuitively, these parameters control how the walk explores
and leaves the neighborhood of starting nodes. They allow a tuning
between outward exploration and local walking.

However, in our case study, it may indeed be interesting, instead
of using biases that only considered the topology of the network, to
use the data associated to nodes, that is, the value of P. The idea is
to bias the walk so that when the walker is located on a node,
transitions to nodes with similar values of P (Fig 5C) are favored. As
P represents a P-value, the walker will be encouraged to favor visits
of correlated and anti-correlated genes. We have conducted many
experiments by replacing the parameters proposed by Mikolov et al
(2013) with our suggested use of similarity between nodes or by
combining the different ways to bias the walk. It turns out, in the
end, that using only the bias based on the similarity of P-values
gives the best results. The bias we introduced allows to control the
walk by assigning a transition t from a node i to a node j pro-
portional to ti,j = max(1−|Pi−Pj|,e) with e being a very small value
(concretely set to 1 × 10−16 in the algorithm) that prevents obtaining
a transition probability between two nodes equal to zero.

Other parameters tuning the Node2Vec method are given below:

• Number of walks: 20
• Walk length: 100
• Vector dimensions: 128
• Window size: 5
• Epoch: 10.

Assessing the impact of using biased random walk on embedding

To test the ability of the biased random walk to take into account
the weight of the nodes and to visualize the changes that this
brings on the embedding, we conducted an experiment on a toy
example. Fig 6A shows a visualization of a toy graph composed of 11
nodes. Each node is associated with a P-value that goes from 1 × 10−5

for the central node to 1 for the peripheral nodes through 0.05 (the

Figure 6. Illustration of the impact of using a
biased randomwalk on the embedding based on
a toy example.
(A) Illustration of a toy graph composed of 11 nodes.
Each node is associated with a P-value (named p
in the figure) that goes from 1 × 10−5 for the central
node to 1 for the peripheral nodes through 0.05 (the
minimal P-value usually used to consider that a
variation observed is effective). (B) Standard
embedding obtained by node2vec. Nodes are spread
out and their position roughly reflects their
location on the graph. Indeed, with the exception of
node 1, nodes 2–6 are on one side and nodes 7–11 on
the other. (C) Embedding obtained using our
proposed biased random walk that embeds the
similarity of node values. Here, the figure shows
distinct clusters and the foreground one, which
contains nodes 1, 4, 5, 6, and 7, represents a
satisfactory grouping that contains a number of
nodes if interest (appearing in orange and red).
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minimal P-value usually used to consider that a variation observed is
effective). This graph is topologically composed of two modules
(nodes 1–5 and nodes 7–11) with a central node which is node 6. We
are interested in the changes that the bias we introduced produces
on the embedding. To do so, we generated a standard embedding
obtained by node2vec (Fig 6B) and an embedding obtained using our
proposed biased randomwalk (Fig 6C) with only three dimensions to
be able to visualize it.

We observe that the nodes of interest, appearing in orange and
red, are further clustered using a biased random that embeds the
similarity of node values. Furthermore, in the standard embedding
(Fig 6B), the nodes are spread out, whereas Fig 6C shows distinct
clusters. The foreground cluster contains nodes 1, 4, 5, 6, and 7
which form a satisfactory grouping, although node 1 is out of place
and node 8 is in the upper-left corner cluster containing nodes 2, 8,
and 11. These results demonstrate that the embedding works as
expected and will allow for the identification of modules of interest
muchmore easily than with an embedding solely based on network
topology as produced by standard node2vec method.

Algorithm

The cohesion measurement of a set of nodes on the graph can be
determined on the embedded space using the cosine distance cos
between the vectors representing the nodes. We use this property
to identify themost similar nodes to a given node vi (represented as

similar function in the algorithm summarized in Fig 7). Thanks to a
greedy approach, we collect, from each node, clusters Mi of in-
creasing size evaluated using the s score previously defined. Our
strategy is to expand the cluster as long as the s score increases
(lines 8–10 of the algorithm). In practice, as we are very strict on the
stopping condition, the clusters obtained are quite small (usually 5
nodes at most). At the end of this phase, we obtain a list of clusters,
each one centered on a node, with each cluster being assigned a
corresponding s score (Fig 5D). The cluster centered on vertex vi is
thus denoted Mi with Mi4V and vi2Mi.

The next step of the method consists in combining the different
clusters while ensuring that the new merged clusters retain spatial
cohesion (Fig 5E). In this context, we say that two clusters Mi and Mj

are spatially cohesive when there is a meaningful intersection
between them. Concretely, we do not simply rely on the presence of
overlapping nodes, but assert that a cluster Mj is cohesive with a
cluster Mi only if its center vj2Mi. Cluster aggregation consists in
processing one by one the clusters found in the previous step,
starting from the cluster with the highest s score (line 13 of the
algorithm), evaluating the clusters formed by the union of Mi with
one or more cohesive clusters and keeping the resulting clusters
with the highest s scores (lines 15–19). The workflow and the al-
gorithm of the AMINE method are presented in Figs 5 and 7.

Parameters used with other methods

For all methods, we used the standard parameters used in the
reference articles. DIAMOnD and DOMINO require a list of seed
genes (i.e., differentially expressed) as input. The choice of the
number of these seed genes is not specified in the manuscripts
presenting the methods and is left to the discretion of the user.
From a list of n genes associated with adjusted P-values, we used as
seed genes all genes with an adjusted P-value < 0.001/n, as done by
Lazareva et al (2021) in their article. GiGA needs as parameter the
maximum size of the identified modules. We executed the method
specifying a size of 20, which is the default. DIAMOnD needs as
parameter the exact size of the module to be found. The default
value is 200 but we consider this to be far too high. To be able to
compare the results with other methods that return small modules,
we chose a size of 20, as for GiGA.

Generation of realistic interaction network

We use an extended version of the Barabasi-Albert model of
preferential attachment (Albert & Barabási, 2000), to generate
several artificial networks by varying the parameters p and q
controlling the probabilities to add and remove edges respectively
and the parameter m specifying the number of initial nodes. Our
results suggest that using three initial nodes with parameters p and
q set to 0.09 and 0.70, respectively, allows to generate random
network with topologies relatively close to real interaction networks
(Table S7).

1,000 graphs were generated using these parameters (an ex-
ample of this kind of graph is given in Fig S3). The strategy to specify
the value of nodes is exactly the same at the one used by Robinson
et al (2017). To be able to do a comparison with other methods,
we generated only one module of designated hits. As AMINE is

Figure 7. Algorithm of AMINE.
The algorithm consists of two main stages. In the first phase (lines 3–11), a
greedy approach is used to assign to each node in the graph, the set of
neighboring nodes in the embedded space that maximizes the s score. The aim is
to iteratively extend each cluster as long as the score continues to increase.
The second phase (lines 14–21) involves combining the individual clusters while
ensuring that the merged clusters maintain spatial cohesion.
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dedicated to the identification of relatively small modules (to focus
on really relevant genes that can be investigated by biologists), we
have targeted our tests on the identification of small modules of
sizes 10 and 20.

Selection of the network for analyzing real datasets

All experiments were performed using the mouse PPI STRING
network with interactions having a global confidence score higher
than 0.7, as is usual.

In the GitHub repository (https://github.com/claudepasquier/
amine), we provide access to three public sources of PPI networks,
namely STRING (Szklarczyk et al, 2019), BioGRID (Oughtred et al,
2021), and IntAct (Del Toro et al, 2022), for four organisms, namely
C. elegans, D. melanogaster, H. sapiens, and M. musculus. We also
provide a file that represents the union of these three networks.
In addition, users can upload their own PPI network and associated
P-values using two simple files. We provide examples of these
files so that users can easily adapt their own network for use with
AMINE. The code also includes options for filtering PPI data. For
example, for STRING, it is possible to filter the data based on each
component of the confidence score. By default, we use a filter
that only includes interactions with an overall confidence score
greater than 0.7. For BioGRID, users can filter interactions based on
the type of interaction (physical or genetic). By default, all inter-
actions are used. For IntAct, it is possible to filter based on a
minimum value of the confidence value. By default, all interactions
are retrieved.

In addition to the freely distributed sources that allow a user to
run AMINE locally, we provide access to a website where users can
run the application without installing anything on their machine.
With this version (available at http://amine.i3s.unice.fr), users can
analyze their datasets using the PPI networks for the four previously
mentioned organisms. As with the experiments, only interactions
with a confidence score greater than 0.7 are used. Thus, a user only
needs to provide the differential gene expression data generated
by the pipeline of his choice. From a very simple interface (Fig S10),
he only has to specify the name of the organism analyzed, the file
on which the data are located, and the ID of the columns containing
the genes’ names, the P-values, and optionally, the fold changes to
be able to launch the process. The address of the page containing
the results is e-mailed to the user when the processing is com-
pleted. On the result page, the most significant modules are listed,
however, all the modules found can be downloaded as an Excel
document consisting of two sheets. The first sheet, named “list of
modules” contains the list of all modules found. The results are
presented in 4 columns containing the module number, the list of
genes in the module, the s score of the module, and the associated
P-value. The second sheet, named “genes tomodules,” is composed
of two columns: the first one contains the name of a gene and the
second one, the module to which it belongs.

It should be noted that we designed this website to allow users
to easily use our application without installing anything locally.
However, the resources are limited, both in terms of CPU and
bandwidth. It is not intended for intensive use. We strongly advise
users who wish to maximize the potential of AMINE to install the
application locally on their machine.

Evaluating the algorithm’s resistance to noisy data

To assess the impact of the network used by the AMINE method,
and in particular, to provide some insights on the robustness of
the method to noisy data, we analyzed the Chiou et al data using
different interaction networks, including BioGRID, Intact, STRING
with a global score threshold set to 0.9 and 0.4 (in addition to the
threshold of 0. 7 in the article) and STRING applying a threshold
of 0.7 on the different components of the global score, that
is, co-expression, database, experimental, and text mining (the
filtering on neighborhood, fusion, and co-occurrence sources
generate networks too small and sparse to be successfully used
to identify a module). The modules identified using each of these
configurations are presented in Tables S8–S15, and the best
annotation found for each module is presented in Table S16. It
can be seen that depending on the type of network used, the
enrichments differ. However, the same subset of relevant an-
notations, such as those related to glycolysis and gluconeo-
genesis, ECM organization, and elastic fiber formation, are generally
found.

Looking at the number of enrichments obtained with an FDR <
1 × 10−5 for each network, we see that the different versions of the
STRING database filtered on the basis of the global score are
those with which the top 5 modules obtain an annotation.
STRING filtered on the database score also sees 5 of these
modules enriched. STRING filtered with co-expression and text
mining scores sees 4 of the first five modules enriched. STRING
filtered by considering only experimental data associated with a
score > 0.7 is the network that gets the least significant en-
richment, as only 2 out of 5 modules have enrichments asso-
ciated with an FDR < 1 × 10−5. Regarding the other databases, the
results obtained seem less relevant than with STRING because
with BioGRID and Intact, only two modules are annotated with an
FDR < 1 × 10−5. One of the most relevant annotations in the
context of the Chiou et al study is the pathway directly asso-
ciated with hypoxia: “HIF-1 signaling pathway.” This annotation is
only identified with STRING filtered on the basis of a global score
higher than 0.7 and higher than 0.4.

We can draw two main observations from this experiment.
Firstly, the AMINE method performs well regardless of the network
used and appears to be tolerant to noisy data, such as that de-
rived solely from text mining, as relevant annotations are ob-
tained from this dataset, consistent with those obtained using
more complete data. Secondly, using the STRING database by
default with a threshold of 0.7 on the global score appears to be
relevant, as it allows for similar enrichment results to those
obtained using a threshold of 0.4 with a smaller dataset, thus
reducing the algorithm’s execution time.

Cell culture

The PDAC cell line, MIA PaCa-2, was obtained from Richard Tomasini
CRCM, Marseille, France, and culture in DMEM (Gibco, Life Tech-
nologies Limited) supplemented with 10% FBS, and penicillin/
streptomycin. Cells were maintained at 37°C in a humidified at-
mosphere (5% CO2). The cells were tested routinely for mycoplasma
contamination.
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siRNA transfection

siRNAs (Sigma-Aldrich) were used for BLIMP 1 silencing. Non-
targeting (si-Ctrl: SIC001) or BLIMP 1-targeting siRNAs (si-Blimp
1-1: 59CUUGGAAGAUCUGACCCGA-39; si-Blimp 1-2: 59CCUUUCAAAU-
GUCAGACUU-39 were transfected in MIA PaCa-2 cells using Lipof-
ectamine RNAiMAX (Invitrogen, Life technologies Corp.) following
the manufacturer’s instructions. The final siRNA concentration was
30 nM. The medium was changed 8 h after transfection and the
efficiency of the transfection was assessed byWestern blot after 72 h.

Western blotting

Cells were lysed in RIPA buffer supplemented with Complete
Protease Inhibitor Cocktail and PhosSTOP Phosphatase Inhibitor
Cocktail (Roche Diagnostics GmbH). Lysate were centrifuged
at 15,294g for 15 min at 4°C and then protein concentration was
quantified using Bradford assay. Protein lysates were subject to
SDS–PAGE and transferred onto a PVDFmembrane. Themembranes
were blocked with 5% low fat milk in Tris-buffer saline–tween (TBS-T)
for 1 h. The membranes were incubated in Blimp 1 antibody (diluted
at 1:1,000; Cell Signaling) overnight. The membranes were washed in
TBS-T followed by incubation with horseradish peroxidase-conjugated
secondary antibody for 1 h at room temperature (Sigma-Aldrich). The
signal was then visualized using ECL reagent (Immobilon Western,
Millipore) and chemoluminescence detection system (fusion FX7
Edge; Vilber).

Human cytokine array

For the cytokine assay, the Proteome Profiler Human XL Cytokine
Array Kit (R&D Systems) was used. The array was carried out using
500 μl of cell supernatants obtained by incubating MIA PaCa-2 in
DMEM 0% FBS, 48 h after siRNA (si-Ctrl or si-Blimp 1-2) transfection,
following the manufacturer’s instructions. For analysis of cytokine
arrays, the intensity of each spot was measured using ImageJ
software. The background was removed from all values, and they
were normalized to the positive control spots.

Statistical analysis

Results are presented as median with interquartile range unless
stated otherwise. Kruskal–Wallis tests followed by a Dunn’s post
test were used to compare data. Analyses were performed using
GraphPad Prism V.8.0.1. A P value < 0.05 was considered statistically
significant.

Data Availability

All data generated or analysed during this study are included in this
published article and its supplementary information files. In ad-
dition, synthetic data generated by Robinson et al (2017) are
available for download on the GitHub repository of AMINE, spe-
cifically in the “data/synthetic” directory. The artificial data gen-
erated for this project are also regenerable using the generator

included in the code deposited on GitHub. RNA-Seq data GSE90625
and GSE90824 from Chiou et al (2017) are accessible at https://
www.omicsdi.org/dataset/geo/GSE90625 and https://www.omicsdi.org/
dataset/geo/GSE90824, respectively, and have been copied onto
the GitHub repository under the directory “data/real/expression/
chiou_2017.” Differential expression analyses of these data
were performed with the DESeq2 R package with default configu-
ration, and the resulting output has been stored in the same
directory.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201550.
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